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Abstract 

The Novamente AI Engine is briefly reviewed. The overall 
architecture is unique, drawing on system-theoretic ideas 
regarding complex mental dynamics and associated emer-
gent patterns. We describe how these are facilitated by a 
novel knowledge representation which allows diverse cogni-
tive processes to interact effectively. We then elaborate the 
two primary cognitive algorithms used to construct these 
processes: probabilistic term logic (PTL), and the Bayesian 
Optimization Algorithm (BOA). PTL is a highly flexible in-
ference framework, applicable to domains involving uncer-
tain, dynamic data, and autonomous agents in complex envi-
ronments. BOA is a population-based optimization algo-
rithm which can incorporate prior knowledge. While origi-
nally designed to operate on bit strings, our extended ver-
sion also learns programs and predicates with variable 
length and tree-like structure, used to represent actions, per-
ceptions, and internal state. We detail some of the specific 
dynamics and structures we expect to emerge through the 
interaction of the cognitive processes, outline our approach 
to training the system through experiential interactive learn-
ing, and conclude with a description of some recent results 
obtained with our partial implementation, including practi-
cal work in bioinformatics, natural language processing, and 
knowledge discovery. 

Introduction and Motivation 

The primary motivation behind the Novamente AI Engine 
is to build a system that can achieve complex goals in 
complex environments, a synopsis of the definition of in-
telligence given in (Goertzel 1993). The emphasis is on the 
plurality of goals and environments. A chess-playing pro-
gram is not a general intelligence, nor is a data mining en-
gine, nor is a program that can cleverly manipulate a re-
searcher-constructed microworld. A general intelligence 
must be able to carry out a variety of different tasks in a 
variety of different contexts, generalizing knowledge 
between contexts and building up a context and task inde-
pendent pragmatic understanding of itself and the world.  
 First among the tenets underlying the design is an under-
standing of mind as the interpenetration of a physical sys-

tem with an abstract set of patterns, where a pattern is 
quantified in terms of algorithmic information theory (Go-
ertzel 1997, Chaitin 1987). In essence, a pattern in an en-
tity is an abstract program that is smaller than the entity, 
and can rapidly compute the entity or its approximation. 
For instance, a pattern in a drawing of a sine curve might 
be a program that can compute the curve from a formula. 
 The understanding of mind as pattern ties in naturally 
with the interpretation of intelligence, at the most abstract 
level, as a problem of finding compact programs that en-
capsulate patterns in the environment, in the system itself, 
and in behavior. This concept was first seriously elaborated 
in Solomonoff’s work on the theory of induction (Solo-
monoff 1964, Solomonoff 1978), and has been developed 
more rigorously and completely in Hutter’s recent work 
(Hutter 2000), which integrates a body of prior work on 
algorithmic information theory and statistical decision the-
ory to formalize the concept of general intelligence. No-
vamente can be proven to be arbitrarily intelligent accord-
ing to Hutter’s definition, if given sufficient computational 
resources. Baum has expounded the cognitive science im-
plications of this perspective on intelligence (Baum 2004).  
 Another tenet of the Novamente approach is the realiza-
tion that intelligence most naturally emerges through situ-
ated and social experience. Abstract thoughts and represen-
tations are facilitated through the recognition and manipu-
lation of patterns in environments with which a system has 
sensorimotor interaction; see for example (Boroditsky and 
Ramscar 2002). This interaction, embodied in the right 
cognitive architecture, leads to autonomy, experiential in-
teractive learning, and goal-oriented self-modification; a 
mind continually adapts based on what it learns from its 
environment and the entities it interacts with.  
 The final tenet is a view of the internal organization of a 
mind as a collection of semi-autonomous agents embedded 
in a common substrate (Goertzel 1993). In this vein, No-
vamente is less extreme than some alternative approaches 
such as Minsky’s Society of Mind (Minsky 1986), where 
agents are largely independent. Novamente is based on the 
idea that minds are self-organizing systems of agents, 
which interact with some degree of individual freedom, but 



are also constrained by an overall architecture involving a 
degree of inbuilt executive control, which nudges the self-
organizing dynamics towards emergent hierarchical or-
ganization.  
 These abstract principles are coherently unified in a phi-
losophy of cognition called the psynet model (Goertzel, 
1997), which is foundational to Novamente, and provides a 
moderately detailed theory of the emergent structures and 
dynamics in intelligent systems. In the model, mental func-
tions such as perception, action, reasoning and procedure 
learning are described in terms of interactions between 
agents. Any mind, at a given interval of time, is assumed to 
have a particular goal system, which may be expressed 
explicitly and/or implicitly. Thus, the dynamics of a cogni-
tive system are understood to be governed by two main 
forces: self-organization and goal-oriented behavior. More 
specifically, several primary dynamical principles are pos-
ited, including: 
Association. Patterns, when given attention, spread some 
of this attention to other patterns that they have previously 
been associated with in some way. Furthermore, there is 
Peirce’s “law of mind” (Peirce 1892), which could be 
paraphrased in modern terms as stating that the mind is an 
associative memory network, whose dynamics dictate that 
every idea in the memory is an active agent, continually 
acting on those ideas with which the memory associates it. 
Differential attention allocation. Patterns that have been 
valuable for goal-achievement are given more attention, 
and are encouraged to participate in giving rise to new pat-
terns. 
Pattern creation. Patterns that have been valuable for 
goal-achievement are mutated and combined with each 
other to yield new patterns. 
Credit Assignment. Habitual patterns in the system that 
are found valuable for goal-achievement are explicitly rein-
forced and made more habitual. 
 Furthermore, the network of patterns in the system must 
give rise to the following large-scale emergent structures: 
Hierarchical network. Patterns are habitually in relations 
of control over other patterns that represent more special-
ized aspects of themselves. 
Heterarchical network. The system retains a memory of 
which patterns have previously been associated with each 
other in any way. 
Dual network. Hierarchical and heterarchical structures 
are combined, with the dynamics of the two structures 
working together harmoniously. 
Self structure. A portion of the network of patterns forms 
into an approximate (fractal) image of the overall network 
of patterns. 

Structures and Algorithms 

The psynet model does not tell you how to build a mind, 
only, in general terms, what a mind should be like. It 
would be possible to create many different AI designs 
based loosely on the psynet model; one example of this is 
the Webmind AI Engine developed in the late 1990’s (Go-

ertzel et al. 2000, Goertzel 2002). Novamente, as a specific 
system inspired by the psynet model, owes many of its 
details to the limitations imposed by contemporary hard-
ware performance and software design methodologies. 
Furthermore, Novamente is intended to utilize a minimal 
number of different knowledge representation structures 
and cognitive algorithms. 
 Regarding knowledge representation, we have chosen an 
intermediate-level atom network representation which 
somewhat resembles classic semantic networks but has 
dynamic aspects that are more similar to neural networks. 
This enables a breadth of cognitive dynamics, but in a way 
that utilizes drastically less memory and processing than a 
more low-level, neural network style approach. The details 
of the representation have been designed for compatibility 
with the system’s cognitive algorithms. 
 Regarding cognition, we have reduced the set of funda-
mental algorithms to two: Probabilistic Term Logic (PTL) 
and the Bayesian Optimization Algorithm (BOA). The 
former deals with the local creation of pieces of new 
knowledge from existing pieces of knowledge; the latter is 
more oriented towards global optimization, and creates 
new knowledge by integrating large amounts of existing 
knowledge. These two algorithms themselves interact in 
several ways, representing the necessary interdependence 
of local and holistic cognition.  
 Having reduced the basic knowledge representations and 
cognitive algorithms to this minimal core, the diverse func-
tional specializations required for pragmatic general intel-
ligence are provided by the introduction of a number of 
node and link types in the atom network, and a high-level 
architecture consisting of a number of functionally special-
ized lobes each deploying the same structures and algo-
rithms for particular purposes (see Figure 1 below). 

Knowledge Representation 

Knowledge representation in Novamente involves two lev-
els, the explicit and the emergent. This section focuses on 
the explicit level; the emergent level involves self-
organizing structures called maps, and will be discussed 
later, after the fundamental cognitive dynamics have been 
introduced. 
 Explicit knowledge representation in Novamente in-
volves discrete units (atoms) of several types: nodes, links, 
and containers, which are ordered or unordered collections 
of atoms. Each atom is associated with a truth value, indi-
cating, roughly, the degree to which it correctly describes 
the world. Novamente has been designed with several dif-
ferent types of truth values in mind; the simplest of these 
consists of a pair of value denoting probability and weight 
of evidence. All atoms also have an associated attention 
value, indicating how much computational effort should be 
expended on them. These contain two values, specifying 
short and long term importance levels. 
 Novamente node types include tokens which derive their 
meaning via interrelationships with other nodes, nodes 
representing perceptual inputs into the system (e.g., pixels, 



points in time, etc.), nodes representing moments and 
intervals of time, and procedures (described below). Links 
represent relationships between atoms, such as fuzzy set 
membership, probabilistic logical relationships, implica-
tion, hypotheticality, and context. The particular types and 
subtypes used, and the justifications for their inclusion, are 
omitted for brevity. 
 Procedures in Novamente are objects which produce an 
output, possibly based on a sequence of atoms as input. 
They may contain generalized combinator trees. These are 
computer programs written in sloppy combinatory logic, a 
language that we have developed specifically to meet the 
needs of tightly integrated inference and learning. 
 Combinatory logic (CL) is a simple yet Turing-complete 
computational system (Curry and Feys 1958). The basic 
units are combinators, which are higher order functions 
that always produce new higher order functions when ap-
plied. Beyond combinators, our language contains num-
bers, arithmetic operators, looping constructs, and condi-
tionals. Procedures may also contain embedded references 
to other procedures. Two unique features of this language 
that are advantageous for our purposes are that programs 
can be expressed as binary trees where the program ele-
ments are contained in the leaves, and that variables are not 
necessary (though they may be introduced where useful). 
Furthermore, we have generalized the evaluation system of 
combinatory logic so there are no type restrictions on pro-
grams, allowing them to be easily modified and evolved by 
Novamente’s cognitive processes (hence sloppy). A full 
exposition of the language is omitted for brevity; see 
(Looks, Goertzel, and Pennachin 2004). 
 Schemata and predicates are procedures that output at-

oms and truth values, respectively. Special-purpose predi-
cates, instead of containing combinator trees, represent 
specific queries that report to the Novamente system some 
fact about its own state. Predicates may also be designated 
as goal nodes, in which case the system orients towards 
making them true. 

Cognitive Algorithms 

Novamente cognitive processes make use of two main al-
gorithms, Probabilistic Term Logic (PTL), and the Bayes-
ian Optimization Algorithm (BOA), described below.  

Probabilistic Term Logic 
PTL is a highly flexible inference framework, applicable to 
many different situations, including inference involving 
uncertain, dynamic data and/or data of mixed type, and 
inference involving autonomous agents in complex envi-
ronments. It was designed specifically for use in No-
vamente, yet also has applicability beyond the Novamente 
framework; see (Goertzel et al. 2004) for a full exposition. 
The goals motivating the development of PTL were the 
desire to have an inference system that: 
• Operates consistently with probability theory, when de-

ployed within any local context (which may be adap-
tively identified). 

• Deals rapidly (but not always perfectly accurately) with 
large quantities of data, yet allows arbitrarily accurate 
and careful reasoning on smaller amounts of informa-
tion, when this is deemed appropriate. 

Figure 1. Each component is a Lobe, which contains multiple atom types and mind agents.  Lobes may span multiple ma-
chines, and are controlled by schemata which may be adapted/replaced by new ones learned by Schema Learning, as decided 
by the Schema Learning Controller.  The diagram shows a configuration with a single interaction channel, that contains sen-

sors, actuators and linguistic input; real deployments may contain multiple channels, with different properties. 



• Deals well with the fact that different beliefs and ideas 
are bolstered by different amounts of evidence (for an 
explanation of how traditional probabilistic models fail 
here, see Wang 1993). 

• Enables robust, flexible analogical inference between 
different domains of knowledge (Indurkhya 1992) 

• Does not require a globally consistent probability model 
of the world, but is able to create locally consistent mod-
els of local contexts, and maintain a dynamically-almost-
consistent overall world-model, dealing gracefully with 
inconsistencies as they occur. 

• Encompasses both abstract, precise mathematical reason-
ing and more speculative hypothetical, inductive, and/or 
analogical reasoning. 

• Encompasses the inference of both declarative and pro-
cedural knowledge. 

• Deals with inconsistent initial premises by dynamically 
iterating into a condition of "reasonable almost-
consistency and reasonable compatibility with the prem-
ises", thus, for example, perceiving sensory reality in a 
way compatible with conceptual understanding, in the 
manner portrayed by Gestalt psychology (Kohler, 1993) 
and developed in the contemporary neural network lit-
erature, see (Haikonen 2003). 

• Makes most humanly simple inferences appear brief, 
compact and simple. For a sustained argument that term 
logic exceeds predicate logic in this regard, see (Som-
mers and Englebretsen, 2000). 

 
One difference between PTL and standard probabilistic 

frameworks is that PTL deals with multivariable truth val-
ues. Its minimal truth value object has two components: 
strength and weight of evidence. Alternately, it can use 
probability distributions (or discrete approximations 
thereof) as truth values. This, along with the fact that PTL 
PTL does not assume that all probabilities are estimated 
from the same sample space, makes a large difference in 
the handling of various realistic inference situations.  

Another difference is PTL’s awareness of context. The 
context used by PTL can be universal (everything the sys-
tem has ever seen), local (only the information directly 
involved in a given inference), or many levels between. 
This provides a way of toggling between more rigorous 
and more speculative inference, and also a way of making 
inference consistent within a given context even when a 
system’s overall knowledge base is not entirely consistent. 

First-order PTL deals with probabilistic inference on 
(asymmetric) inheritance and (symmetric) similarity rela-
tionships, where different Novamente link types are used 
to represent intensional versus extensional relationships 
(Wang, 1995). The inference rules here are deduction 
(A�B, B�C |- A� C), inversion (Bayes rule), similarity-
to-inheritance-conversion, and revision (which merges 
different estimates of the truth value of the same atom). 
Each inference rules comes with its own quantitative truth 

value formula, derived using probability theory and related 
considerations. Analogical inference is obtained as a com-
bination of deductive and inversive inference, and via their 
effects on map dynamics (described later).  

Higher-order PTL deals with inference on links that 
point to links rather than nodes, and on predicates and 
schemata. The truth value functions here are the same as in 
first-order PTL, but the interpretations of the functions are 
different. Variable-free inference using combinators and 
inference using explicit variables and quantifiers are both 
supported; the two styles may be freely intermingled. 

The Bayesian Optimization Algorithm 
BOA is a population-based optimization algorithm that 
works on bit strings. BOA significantly outperforms the 
genetic algorithm on a range of simple optimization prob-
lems by maintaining a centralized probabilistic model of 
the population it is evolving (Pelikan, Goldberg, and 
Cantú-Paz 1999; Pelikan 2002). When a candidate popula-
tion has been evaluated for fitness, BOA seeks to uncover 
dependencies between the variables that characterize 
“good” candidate solutions (e.g., the correct value for posi-
tion 5 in the genome depends on the value at position 7), 
and adds them to its model. In this way, it is hoped that 
BOA will explicitly discover and utilize probabilistic 
“building blocks”, which are then used to generate new 
candidate solutions to populate the next generation. The 
basic algorithm is as follows (adapted from Pelikan 2002):  
 
(1) Generate a random initial population P(0). 
(2) Use the best instances in P(t) to learn a model M(t). 
(3) Generate a new set of instances O(t) from M(t). 
(4) Create P(t+1) by merging O(t) and P(t) according to 

some criteria. 
(5) Iterate steps (2) through (4) until termination criteria 

are satisfied. 
 

 This algorithm tends to preserve good collections of 
variable assignments throughout the evolution, and can 
explore new areas of the search space in a more directed 
and focused way than GA/GP, while retaining the positive 
traits of a population-based optimization algorithm (diver-
sity of candidate solutions and non-local search). 
 For Novamente, we have extended BOA to evolve pro-
grams, written in our sloppy combinatory logic representa-
tion, rather than bit strings (Looks, Goertzel, and Pen-
nachin 2004). Previous work by Ocenasek (Ocenasek 
2002) has extended binary BOA to fixed-length strings 
with non-binary discrete and continuous variables. There is 
a fundamental difference between learning fixed length 
strings and programs. In the former, one is evolving indi-
viduals with a fixed level of complexity and functionality. 
In order to evolve non-trivial program trees however, one 
must rely on incremental progress; a simpler program ac-
cretes complexity over time until it is correct. While BOA 
as described above is effective at optimizing and preserv-
ing small components, it does not innately lead to the addi-



tion of new components. In order to remedy this, we have 
added probabilistic variables to the instance generation 
process that, when activated, have effects similar to cross-
over in genetic programming; see (Looks, Goertzel, and 
Pennachin 2004) for details and examples. 
 We have also begun using BOA to discover surprising 
patterns in large bodies of data, using an approach we call 
pattern mining. In this application, BOA is given a number 
of predefined predicates, such as isTall(X), 
loves(X,Y), isMale(X), etc. Patterns are logical 
combinations of predicates, e.g., isTall(X) AND 
isMale(X). Based on the overall philosophy behind No-
vamente, patterns are evaluated based on “interestingness” 
which is composed of two factors: pattern-intensity, and 
novelty relative to the system’s current knowledge base. 
Pattern-intensity refers to how well a pattern compresses 
regularities in the system’s knowledge; this can be quanti-
fied as the difference between the actual frequency of the 
expression, and the frequency that would be computed 
assuming probabilistic independence. In a domain consist-
ing of random men and women, the example given above 
would be intense, because tallness correlates with male-
ness. If this correlation were not known to the system nor 
easily derivable by the system, then it would be significant 
and acceptably novel, thus being considered “interesting”. 
 This pattern mining approach might run into scalability 
issues, as the predicate space tends to be very large. We 
can resolve this problem by encoding the fact that varying 
degrees of similarity exist between predicates. When simi-
larity is meaningfully quantified, an important cognitive 
mechanism used in creative thought called slippage comes 
into play, where ideas are transformed by substituting one 
concept for another in an intelligent, context-dependant 
fashion (Hofstadter 1986). We incorporate prior similarity 
information by embedding predicates in real spaces, so that 
similar predicates are embedded close to each other. When 
a refinement of this approach is used, BOA can construct 
new procedures that make use of existing ones, leading to 
hierarchical design. 
 A number of factors make our modified BOA variant 
advantageous for use within Novamente. The centralized 
probabilistic model used can be constructed with the aid of 
PTL inference and prior knowledge, allowing them to be 
used in instance generation. Contrariwise, fitness evalua-
tion of instances generated by BOA with a particular 
model can be used to revise existing knowledge in the sys-
tem, and infer new knowledge. As with most evolutionary 
techniques, BOA can also be used to perform a number of 
learning tasks inside Novamente, such as categorization, 
unsupervised clustering of atoms, and function learning, by 
using appropriate fitness functions.  

Cognitive Processes 

This section presents the most important cognitive proc-
esses that take place in Novamente. All of the cognitive 
processes described below are encapsulated within one or 
more mind agents; software objects which dynamically 

update the atoms in the system on an ongoing basis.  
 In the present Novamente code, mind agents are coded 
directly in C++. However, our intention is to ultimately 
replace these C++ objects with schemata written in sloppy 
combinatory logic, which will enable Novamente to reason 
about and modify its own cognitive mechanisms, thus 
allowing thoroughly self-modifying and self-improving 
general intelligence. The execution of this plan awaits only 
the implementation of some optimizations in the schema 
execution framework. 

Inference 
The most direct application of PTL is to seek interrelations 
between sets of important, apparently interrelated atoms, 
leading to the creation of links and predicates joining im-
portant atoms. As a compact way of storing/computing 
when entities are interrelated, dimensional embeddings is 
used. Additionally, important predicates are evaluated, and 
links are constructed between them. This process is the 
primary creator of relations between atoms in Novamente. 

Learning of Cognitive Schemata 
A critical issue here is inference control, which is provided 
by a combination of hard-coded algorithms and learned 
programs called cognitive schemata. A key milestone in 
Novamente intelligence will occur when BOA+PTL learn-
ing is able to learn cognitive schemata of complexity equal 
to that of Novamente mind agents. At this point, No-
vamente will be able to improve its own cognitive proc-
esses, which should lead to a phase of exponentially in-
creasing intelligence. 

Pattern Mining and Concept Creation 
Pattern mining is performed on all of the atoms in the sys-
tem, and new predicates are created encapsulating these 
patterns. It is also used to create new schemata through the 
combination of existing ones. Pattern mining can also be 
restricted to create new nodes representing logical combi-
nations of existing nodes. 

Goal-Directed Behavior 
Schemata that are expected to achieve current goals are 
executed, the connection between the schemata and the 
goals having been found through inference. Furthermore, 
inference is used to search for schemata that will achieve 
particular goals in important contexts, including, as men-
tioned above, abstract cognitive control schemata. 

System Maintenance 
As time passes, system status and goal satisfaction are re-
evaluated, new percepts are fed into the system, and infer-
ence is used to perform context-dependant time-decay on 
knowledge. Atoms with the lowest long term importance 
are deleted from the system. System parameters are ad-
justed to optimize the system’s behavior and prevent its 
degradation. 



Attention Allocation 
Novamente, at any given time, will possess a huge number 
of atoms. In order to cope with restrictions on computa-
tional resources, it is critical that the system be able to in-
telligently focus its attention on the subset of atoms that is 
most important at the moment.  
 Attention allocation is done through the application of 
inference and predicate learning to activity tables, which 
record when the different cognitive processes are applied 
and to which atoms. The goal is to intelligently update the 
short and long term importance levels as time passes; the 
former in order to move from focusing on one set of atoms 
to focusing on another set, and the latter to assign credit 
based on the utility of carrying out the cognitive processes 
on different atoms, and of determining which schemata 
lead to goal fulfillment in different contexts.  
 Short and long term importance are updated using the 
same criterion but on different time scales, based on the 
distinction between what Novamente is thinking about and 
what Novamente considers important over time. 
Importance enters the system via atoms associated with the 
perception of events in the outside world, and atoms ex-
pected to lead to goal fulfillment. Included in the latter 
category is the meta-level goal of adding valuable knowl-
edge to the system; if thinking about something has been 
useful in the past, it may be useful to think about it in the 
future. Importance is differentially spread along links via 
inference, based on the link type. 
 An important aspect of credit assignment is dealing with 
false causality; for example, roosters often crow prior to 
the sun rising. If the system observes this, and wants to 
cause the sun to rise, it may well cause a rooster to crow. 
But once this fails, or if the system holds background 
knowledge indicating that roosters crowing is not likely to 
cause the sun to rise, then this will be invoked by inference 
to discount the strength of the implication between rooster-
crowing to sun-rising, so that it will not be strong enough 
to guide schema execution. 

Perception and Action 
In Novamente, perception and action are fully integrated 
with the rest of cognition. The system will initially be pro-
vided with modality-appropriate predicates and schemata, 
such as low-level visual processing and basic movement 
commands. These will be written in sloppy combinatory 
logic, so that they can be modified and augmented via 
BOA and PTL through experiential interactive learning, 
described later. 
 Since perceptual processing will occur within the same 
regime as the rest of the system, focus can iteratively shift 
between perception and cognition, leading to a balance of 
bottom-up and top-down constraints in tasks such as object 
recognition, as described in Gestalt psychology (Kohler 
1992, Haikonen 2003). For ambiguous percepts such as the 
Necker cube (the two-dimensional shadow of a wire-frame 
cube), this process need not converge. 

Emergent Structures 

The entire Novamente design is structured in order to give 
rise implicitly to the advanced representations and behav-
iors described in the next section. However, there are sev-
eral processes which are explicitly geared towards their 
creation. As a form of unsupervised learning, clustering is 
performed on the atoms in the system with BOA. Inference 
and pattern mining are performed on the activity table to 
find complex recurrent patterns of activity, which and then 
use them to guide future activity, and sometimes create 
predicates embodying them. These recurrent patterns of 
activity are called maps, and are the primary high-level 
structures described in the next section. 

Emergent Representation and Dynamics 

Perhaps the subtlest aspect of the Novamente design is the 
interaction whereby attention allocation dynamics are used 
to drive inference and learning, which feed back fluidly to 
direct attention allocation in turn. This allows the defini-
tion of maps; sets of Atoms that tend to be activated to-
gether, or tend to be activated according to a certain pat-
tern, such as an oscillation or a strange attractor.  
 Generally speaking, the same types of knowledge are 
represented by individual atoms, as well as by large maps 
of atoms (some atoms gain meaning only via their coordi-
nated activity involving other atoms). This is complemen-
tary to different tasks; atom level representation is crisp, 
while map level representation is more flexible and non-
brittle. Below, we describe a few of the map types that can 
emerge in Novamente. 
 A static map, the simplest kind, is a collection of atoms 
that are strongly interconnected with Hebbian links; such 
atoms in such a map will clearly tend to be acted on simul-
taneously, due to the spreading of short term importance. 
Schema maps, or distributed schemata, represent complex 
behaviors, and consist primarily of schemata. For example, 
when executing a complex motor movement, a sequence of 
schemata may be executed, with the precise timing and 
parameters depending on input from perception and 
internal state, both of which affect the attention allocation 
process. A memory map consists largely of nodes denoting 
specific entities, and the relationships between them.  
 Many of the processes implemented explicitly on the 
atom level can emerge implicitly on the map level. For 
example, the collection of links between the individual 
atoms of two maps can be seen as a higher level structure 
linking the two maps together, and will manifest many of 
the same dynamics that occur along single links, in a more 
flexible, complex, and context-aware fashion. 
 Focused attention in inference is particularly decisive for 
map formation; it causes relatively small maps to form, as 
well as hierarchical maps of a certain nature. If a certain set 
of nodes has been held within focused attention, meaning 
that many predicates embodying combinations of them 
have been constructed, evaluated, and reasoned on, this 
leads to the construction of Hebbian links between them, 



forming a map. Focused attention in inference allows the 
system to minimize the use of independence assumptions, 
thus improving the accuracy of PTL. This process is quite 
expensive, and scales exponentially, so focused attention 
cannot hold too many items within it at one time.  
 While the maps formed via focused attention will gener-
ally be relatively small, their members may be nodes 
grouping other nodes together, which may themselves be 
involved in maps. In this way, hierarchical maps may form 
via clusters of clusters. Since the clusters on each level 
may be interconnected, this is a manifestation of the dual 
network structure mentioned earlier. 

Experiential Interactive Learning 

In practice an intelligent system is not just a thinking ma-
chine, it is a control system embedded in a world, using 
cognition to carry out real-world tasks that it judges impor-
tant. Not only are perception and action intrinsically criti-
cal, they may also serve as a foundation for more abstract 
abilities (e.g., Boroditsky and Ramscar 2002), including 
communication, control of abstract cognition, and self-
modification. 
 Experiential interactive learning gives a mind a rich and 
workable understanding of certain basic concepts that are 
indispensable for making sense of itself and the world. 
This understanding is expressed not as a short list of basic 
facts about the world, but rather a rich network of relation-
ships involving a short list of basic concepts. In No-
vamente, this corresponds to flexible concept maps 
centered around a key collection of nodes.  
 The notion of these basic concepts has a long history; 
the form that had the most impact on the Novamente de-
sign that of Wierzbicka, who attempted the first enumera-
tion of these “semantic universals” (Wierzbicka 1972), 
which by now number around forty (Wierzbicka 1996). 
Without going so far as to accept that this list constitutes a 
fixed and rigid universal ontology, one can posit a loosely 
defined set of semantic primitives as being foundational to 
understanding the world, notions such as I, you, when, be-
cause, after/before, etc. All of the primitives are grounded 
in Novamente’s built-in structures and dynamics; e.g., be-
cause can be grounded in causality and implication links, 
want in goals nodes, and so forth. Experiential interactive 
learning allows higher level representations and mecha-
nisms to develop around these impoverished mappings. 
 Through observing itself interact with an environment, a 
Novamente system will build up a complex system of in-
ternal maps describing its own behavior in various con-
texts, and the behavior of other systems in the environ-
ment, including other minds. This will lead to the forma-
tion of a “self-system” potentially including multiple sub-
selves (Rowan 1990), as well as the possibility of goal-
directed self-modification, in which a Novamente system 
modifies its own cognitive algorithms and ultimately its 
own data structures in order to allow it to better achieve its 
goals. This sort of experience-driven cognitive self-
modification is the crux of Novamente general intelligence. 

Human Language Processing 

Human language processing presents a uniquely difficult 
problem for Novamente and other artificial systems. In 
principle, it is not necessarily solvable by the creation of 
learning and memory mechanisms that operate with hu-
man-level effectiveness. Learning human language without 
a human embodiment or evolutionary heritage is a much 
harder problem than learning human language in the pos-
session of such endowments. For communication between 
different Novamente systems, a special language will be 
utilized, which is radically different from any human lan-
guage, lacking a linear ordering. 
 Providing Novamente with understanding of human 
language is done through a hybrid approach which com-
bines experiential interactive learning, and a conventional 
computational-linguistics based architecture implemented 
within the Novamente framework. In this approach, syntax 
processing is carried out using the link parsing framework 
developed by (Sleator and Temperley 1991), and the out-
put of link parsing is mapped into Novamente nodes and 
links using special schemata called “semantic algorithms.” 
Semantic disambiguation and reference resolution (Man-
ning and Schuetze 1999) are carried out via PTL inference. 
At present this Novamente-based NLP framework is capa-
ble of dealing with a wide variety of English sentences, 
and its comprehension is enhanced via an interactive user 
interface which allows users to view Novamente’s inter-
pretation of their input and rephrase their language or cor-
rect Novamente’s interpretation as necessary. 

Practical Applications 

The Novamente design outline in the preceding sections of 
this paper is embodied in a C++ implementation that is 
approximately 50% complete. A number of performance 
issues, such as effectively swapping atoms between disk 
and memory, and distributed processing, create additional 
complications that we have omitted for brevity. PTL and 
BOA have both been implemented and tested successfully; 
and much of the natural language framework described 
above has been completed.  
 In parallel with the development of Novamente to 
achieve general intelligence, the system has been utilized 
more narrowly as an “AI toolkit” in the construction of 
practical commercial software applications, for example: 

Bioinformatics. The Biomind Analyzer, developed by 
Biomind LLC together with Novamente LLC, is an enter-
prise system for intelligent analysis of microarray gene 
expression data. BOA is used to uncover interesting pat-
terns in labeled datasets, and also to learn classification 
models. PTL is used for the integration of background in-
formation from a number of heterogeneous sources of bio-
logical knowledge, covering gene and protein function, 
research papers, gene sequence alignment, protein interac-
tions, and pathways. This allows the Biomind Analyzer to 
augment the datasets it analyzes with background features 



corresponding to gene or protein categories, participation 
in pathways, etc. Inference is then used to create new rela-
tions between the genes and the functional categories pro-
vided by the background sources, effectively suggesting 
function assignments to genes with unknown roles. 

Human Language and Knowledge Management. The 
Knowledge Mining Initiative, developed by Object Sci-
ences Corp. together with Novamente LLC, utilizes No-
vamente’s cognitive algorithms in combination with its 
NLP framework. Knowledge is entered via an interactive 
interface, which allows users to review and revise the sys-
tem’s understanding of that knowledge. A knowledge base 
is thus produced, which is augmented by reasoning, and 
may be queried in English or a special formal language. 
BOA Pattern Mining is used to spontaneously create que-
ries that are judged interesting. 
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